USE

This fluorochrome-conjugated antibody permits the identification and numeration of cell populations expressing the CD14 antigen present in human biological samples using flow cytometry.

PRINCIPLE

This test is based on the ability of specific monoclonal antibodies to bind to the antigenic determinants expressed by leucocytes. Specific staining of the leucocytes is performed by incubating the sample with the IOTest reagent. The red cells are then removed by lysis and the leucocytes, which are unaffected by this process, are analyzed by flow cytometry. The flow cytometer measures light diffusion and the fluorescence of cells. It makes possible the delineation of the population of interest within the electronic window defined on a histogram, which correlates the orthogonal diffusion of light (Side Scatter or SS) and the diffusion of narrow-angle light (Forward Scatter or FS). Other histograms combining two of the different parameters available on the cytometer, can be used as supports in the gating stage depending on the application chosen by the user. The fluorescence of the so delimited cells is analyzed in order to distinguish the positively-stained events from the unstrained ones. The results are expressed as a percentage of positive events in relation to all the events acquired by the gating.

EXAMPLES OF CLINICAL APPLICATIONS

The CD14 antigen is strongly expressed on monocytes and macrophages and moderately so on neutrophils and the dendritic cells subpopulation. CD14 is a useful marker for the immunophenotyping of acute myeloid leukaemia (AML). Moreover, the simultaneous analysis of the expression of CD14 and CD13 antigens helps to differentiate M4 AMLs (1) with a monocytic ontogeny (CD14+CD13+ phenotype) from M2 AMLs with a non-monocytic ontogeny (CD14+CD13− phenotype) (2 – 5). However, the use of CD14-APC conjugated antibody (Ref. IM2580) is not recommended for the precise enumeration of weakly positive events, especially when a differential diagnosis between an M2 AML and an M4 AML only rests upon the percentage of CD14dim myeloid cells in the blast cell population.

STORAGE AND STABILITY

The conjugated liquid forms must be kept at between 2 and 8°C and protected from light, before and after the vial has been opened. Stability of closed vial: see expiry date on vial. Stability of open vial: the reagent is stable for 90 days.

PRECAUTIONS

1. Do not use the reagent beyond the expiry date.
2. Do not freeze.
3. Let it come to room temperature (18 – 25°C) before use.
5. Avoid microbial contamination of the reagents, or false results may occur.
6. Antibody solutions containing sodium azide (NaN₃) should be handled with care. Do not ingest and avoid contact with the skin, mucosa and eyes.
7. All blood samples must be considered as potentially infectious and must be handled with care (in particular: the wearing of protective gloves, gowns and goggles).
8. Never pipette by mouth and avoid all contact of the samples with the skin, mucosa and eyes.
9. Blood tubes and disposable material used for handling should be disposed of in ad hoc containers intended for incineration.

SAMPLES

Venous blood or bone marrow samples must be taken using sterile tubes containing an EDTA salt as the anticoagulant. The use of other anticoagulants is not recommended.

The samples should be kept at room temperature (18 – 25°C) and not shaken. The sample should be homogenized by gentle agitation prior to taking the test sample. The samples must be analyzed within 24 hours of venipuncture.

METHODOLOGY

NECESSARY MATERIAL NOT SUPPLIED

- Flow cytometer.

PROCEDURE

NOTE: The procedure below is valid for standard applications. Sample and/or VersaLyse volumes for certain Beckman Coulter applications may be different. If such is the case, follow the instructions on the application’s technical leaflet. For each sample analyzed, in addition to the test tube, one control tube is required in which the cells are mixed in the presence of the isotypic control. For each sample analyzed, in addition to the test tube, one control tube is required in which the cells are mixed in the presence of the isotypic control.

1. Add 10 µL of specific IOTest conjugated antibody to each test tube, and the necessary amount of the appropriate isotypic control to each control tube.
2. Add 100 µL of the test sample to both tubes. Vortex the tubes gently.
3. Incubate for 15 to 20 minutes at room temperature (18 – 25°C), protected from light.
4. Then perform lysis of the red cells, if necessary, by following the recommendations of the lysis reagent used.

SAMPLING TUBE

- Add 10 µL of specific IOTest conjugated antibody to each test tube, and the necessary amount of the appropriate isotypic control to each control tube.
- Add 100 µL of the test sample to both tubes. Vortex the tubes gently.
- Incubate for 15 to 20 minutes at room temperature (18 – 25°C), protected from light.
- Then perform lysis of the red cells, if necessary, by following the recommendations of the lysis reagent used.

5. Centrifuge for 5 minutes at 150 x g at room temperature.
6. Remove the supernatant by aspiration.
7. Resuspend the cell pellet using 3 mL of PBS.
8. Repeat step 5.
9. Remove the supernatant by aspiration and resuspend the cell pellet:
 - 0.5 mL or 1 mL of PBS plus 0.1% of formaldehyde if the preparations are to be kept for more than 2 hours and less than 24 hours. (A 0.1% formaldehyde PBS can be obtained by diluting 12.5 µL of the IOTest 3 Fixative Solution (Ref. A07800) at its 10X concentration in 1 mL of PBS).
 - 0.5 mL or 1 mL of PBS without formaldehyde, if the preparations are to be analyzed within 2 hours.

NOTE: In all cases, keep the preparations between 2 and 8°C and protected from light.
PERFORMANCE SPECIFICITY
The CD14 molecule is a protein with a molecular weight of 53 – 55 kDa anchored in the membrane by means of a glycosyl-phosphatidylinositol group (GPI) (6).

The CD14 antigen is strongly expressed on monocytes and macrophages and moderately so on peripheral blood polynuclear neutrophils; it is also present on pleural phagocytes and dendritic reticular cells. CD14 is found on cells of the myelo-monocytic line and is only very weakly expressed by B-lymphocytes. It is absent from T lymphocytes as well as from NK cells, erythrocytes and platelets (7).

The monoclonal antibody RMO52 was assigned to CD14 during the 6th HLDA Workshop on Human Leucocyte Differentiation Antigens, held in Kobe, Japan, in 1996 (WS Code: MA62, Section M)(5).

EXPECTED VALUES
Each laboratory must compile a list of reference values based upon a group of healthy donors from the local population. This must be done by taking age, sex and ethnic group into account, as well as any other potential regional differences.

In our laboratories, the whole blood samples of 10 healthy adults were used. The results obtained for the count of the positive events of interest are given in the tables below:

<table>
<thead>
<tr>
<th>CD14</th>
<th>Number</th>
<th>Mean (%)</th>
<th>SD</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD14*</td>
<td>10</td>
<td>93</td>
<td>5.7</td>
<td>6.1</td>
</tr>
</tbody>
</table>

LINEARITY
To test the linearity of staining of this reagent, a positive cell line (activated THP1) and a negative cell line (FRN 3.4.14) were mixed in different proportions with a constant final number of cells, so that the positive / negative cell line ratio of the mixture ranged from 0 to 100%

Aliquots were stained using the procedure described above and linear regression between the expected values and the observed values was calculated.

<table>
<thead>
<tr>
<th>Specificity</th>
<th>Linear regression</th>
<th>Linearity (r²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD14</td>
<td>Y = 0.999 X + 1.494</td>
<td>0.999</td>
</tr>
</tbody>
</table>

INTRA-LABORATORY REPRODUCIBILITY
On the same day and using the same cytometer, 12 measurements of the positivity of a sample containing positive cells (peripheral blood from the same donor) were carried out. The results obtained are summarized in the following table:

<table>
<thead>
<tr>
<th>CD14</th>
<th>Number</th>
<th>Mean (%)</th>
<th>SD</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD14*</td>
<td>12</td>
<td>99.89</td>
<td>0.06</td>
<td>0.06</td>
</tr>
</tbody>
</table>

INTER-LABORATORY REPRODUCIBILITY
On the same day and on the same sample containing positive cells (peripheral blood from the same donor), 12 measurements of the positivity were carried out by two technicians and the preparations analyzed using two different cytometers. The results obtained are summarized in the following tables:

Cytometer n° 1:

<table>
<thead>
<tr>
<th>CD14</th>
<th>Number</th>
<th>Mean (%)</th>
<th>SD</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD14*</td>
<td>12</td>
<td>99.89</td>
<td>0.06</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Cytometer n° 2:

<table>
<thead>
<tr>
<th>CD14</th>
<th>Number</th>
<th>Mean (%)</th>
<th>SD</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD14*</td>
<td>12</td>
<td>98.98</td>
<td>0.29</td>
<td>0.30</td>
</tr>
</tbody>
</table>

LIMITATIONS OF THE TECHNIQUE
1. Flow cytometry may produce false results if the cytometer has not been aligned perfectly, if fluorescence spillover have not been correctly compensated for and if the regions have not been carefully positioned.
2. It is preferable to use a RBC lysis technique with a washing step as this reagent has not been optimized for "no wash" lysis techniques.
3. Accurate and reproducible results will be obtained as long as the procedures used are in accordance with the technical insert leaflet and compatible with good laboratory practices.
4. The conjugated antibody of this reagent is calibrated so as to offer the best specific signal/non-specific signal ratio. Therefore, it is important to adhere to the reagent volume/sample volume ratio in every test.
5. In the case of a hyperleucocytosis, dilute the specimen in PBS so as to obtain a value of approximately 5 x 10^9 leucocytes/L.
6. In certain disease states, such as severe renal failure or haemoglobinopathies, lysis of red cells may be slow, incomplete or even impossible. In this case, it is recommended to isolate mononucleated cells using a density gradient (Ficoll, for example) prior to staining.

MISCELLANEOUS
See the Appendix for examples and references.

TRADEMARKS
The BECKMAN COULTER logo, Beckman Coulter, CXP, IOTest are registered trademarks of Beckman Coulter, Inc.

MANUFACTURED BY:
IMMUNOTECH
a Beckman Coulter Company
B.P. 177 – 13276 Marseille Cedex 9
France
Customer Services: (33) 4 19 17 27 27
www.beckmancoulter.com
EXAMPLES

The graph below is a biparametric representation (Side Scatter versus Fluorescence Intensity) of lyzed normal whole blood sample. Staining is with IOTest CD14-APC Conjugated Antibody (Ref. IM2580). All leucocytes are represented.

Analysis is performed with a CYTOMICS FC 500 flow cytometer equipped with CXP Analysis Software.

REFERENCES

