IOTest®
CD41-PE

<table>
<thead>
<tr>
<th>ENGLISH</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>CD41</td>
</tr>
<tr>
<td>Clone</td>
<td>P2</td>
</tr>
<tr>
<td>Hybridoma</td>
<td>SP/2-Ag14 x Balb/c</td>
</tr>
<tr>
<td>Immunogen</td>
<td>Human platelets</td>
</tr>
<tr>
<td>Immunoglobulin</td>
<td>IgG1</td>
</tr>
<tr>
<td>Species</td>
<td>Mouse</td>
</tr>
<tr>
<td>Source</td>
<td>Ascites</td>
</tr>
<tr>
<td>Purification</td>
<td>Protein A affinity chromatography</td>
</tr>
<tr>
<td>Fluorochrome</td>
<td>R Phycocerythrin (PE)</td>
</tr>
<tr>
<td>λ, excitation</td>
<td>488 nm</td>
</tr>
<tr>
<td>Emission peak</td>
<td>575 nm</td>
</tr>
<tr>
<td>Buffer</td>
<td>PBS pH 7.2 plus 2 mg / mL BSA and 0.1% NaN3</td>
</tr>
</tbody>
</table>

USE
This fluorochrome-conjugated antibody permits the identification and quantification of platelet and leucocytic populations expressing the CD41 antigen present in human biological samples using flow cytometry.

PRINCIPLE
This test is based on the ability of specific monoclonal antibodies to bind to the antigenic determinants expressed by platelets or leucocytes. Specific staining of leucocytes or platelets is performed by incubating the sample with the IOTest reagent. The red cells are then removed by lysis. The platelets and the leucocytes, which are unaffected by this process, are analyzed by flow cytometry.

The flow cytometer measures light diffusion and the fluorescence of cells. It makes possible the delimitation of the population of interest within the fluorescence of cells. It makes possible the orthogonal diffusion of light (Forward Scatter or FS). Other histograms combining two of the different parameters available on the cytometer can be used as supports in the gating stage depending on the application chosen by the user.

The fluorescence of the so delimited platelets or leucocytes is analyzed in order to distinguish the positively-stained events from the unstained leucocytes. The results are expressed as a percentage of positive events in relation to all ones. The results are expressed as a percentage of positive events in relation to all ones. The results are expressed as a percentage of positive events in relation to all ones. The results are expressed as a percentage of positive events in relation to all ones.

3. Let it come to room temperature (18 – 25°C) before use.
5. Avoid microbial contamination of the reagents, or false results may occur.
6. Antibody solutions containing sodium azide (20, 100 and 500 µL) must be handled with care. Do not take internally and avoid all contact with the skin, mucosa and eyes.
7. All blood samples must be considered as potentially infectious and must be handled with care (in particular, the wearing of protective gloves, gowns and goggles).
8. Never pipette by mouth and avoid all contact of the samples with the skin, mucosa and eyes.
9. Blood tubes and disposable material used for handling should be disposed of in ad hoc containers intended for incineration.

SAMPLES
Venous blood or bone marrow samples must be taken using sterile tubes containing an EDTA salt as the anticoagulant. The use of other anticoagulants is not recommended. The samples should be kept at room temperature (18 – 25°C) and not shaken. The sample should be homogenized by gentle agitation prior to taking the test sample. The samples must be analyzed within 24 hours of venipuncture.

METHODOLOGY
NECESSARY MATERIAL NOT SUPPLIED
- Sampling tubes and material necessary for sampling.
- Automatic pipettes with disposable tips for 20, 100 and 500 µL.
- Plastic haemolysis tubes.
- Calibration beads: Flow-Set™ Fluospheres (Ref. 6607007).
- Red cell lysis reagent with washing stage after lysis. For example: VersaLyse™ (Ref. A07800).
- Leucocyte fixation reagent. For example: IOTest 3 Fixative Solution (Ref. A07800).
- Isotypic control: IOTest reagent.
- Buffer (PBS: 0.01 M sodium phosphate; pH 7.2).
- Centrifuge.
- Automatic agitator (Vortex type).
- Flow cytometer.

PROCEDURE
NOTE: The procedure below is valid for standard applications. Sample and/or VersaLyse volumes for certain Beckman Coulter applications may be different. If such is the case, follow the instructions on the application’s technical leaflet. For each sample analyzed, in addition to the test tube, one control tube is required in which the cells are mixed in the presence of the isotypic control (Ref. A07796).
1. Add 20 µL of specific IOTest conjugated antibody to each test tube, and 20 µL of the isotypic control to each control tube.
2. Add 100 µL of the test sample to both tubes. Vortex the tubes gently.
3. Incubate for 15 to 20 minutes at room temperature (18 – 25°C), protected from light.
4. Then perform lysis of the red cells, if necessary, by following the recommendations of the lysis reagent used.
5. As an example, if you wish to use VersaLyse (Ref. A09777), refer to the leaflet and follow preferably the procedure called “with concomitant fixation”, which consists of adding 1 mL of the “Fix-and-Lyse” mixture prepared extemporaneously. Vortex immediately for one second and incubate for 10 minutes at room temperature, protected from light.
6. If the sample does not contain red cells, add 2 mL of PBS.
7. Centrifuge for 5 minutes at 150 x g at room temperature.
8. Remove the supernatant by aspiration.
9. Resuspend the cell pellet using 3 mL of PBS.
10. Repeat step 5.
11. Remove the supernatant by aspiration and resuspend the cell pellet using:
- 0.5 mL or 1 mL of PBS plus 0.1% of formaldehyde if the preparations are to be kept for more than 2 hours and less than 24 hours. (A 0.1% formaldehyde PBS can be obtained by diluting 12.5 µL of the IOTest 3 Fixative Solution (Ref. A07800) at its 10X concentration in 1 mL of PBS).
- 0.5 mL or 1 mL of PBS without formaldehyde, if the preparations are to be analyzed within 2 hours.

NOTE: In all cases, keep the preparations between 2 and 8°C and protected from light.
PERFORMANCE

SPECIFICITY

The monoclonal antibody (mAb) P2 recognizes an epitope of the CD41 molecule (gpIIb), which is dependant on the expression of the gpIIb-IIIa complex formed with the CD61 glycoprotein (gpIIIa) (3, 4). As a result, the P2 clone immunoprecipitates the gpIIb-IIIa complex with a molecular weight of 95-160 kDa (5). MAb P2 blocks the fixation of fibrinogen and inhibits platelet aggregation induced by thrombin, collagen and ADP (4).

The P2 clone immunoprecipitates the gpIIb-IIIa complex with a molecular weight of 95-160 kDa (5). MAb P2 blocks the fixation of fibrinogen and inhibits platelet aggregation induced by thrombin, collagen and ADP (4).

MAb P2 was assigned to CD41 during the 3rd HLDA Workshop on Human Leucocyte Differentiation Antigens, Oxford, England, held in 1986 (WS Code: 854, Section P) (5).

LINEARITY

To test the linearity of staining of this reagent, a positive cell line (HEL) and a negative cell line (FRN 17.4.14.33) were mixed in different proportions with a constant final number of cells, so that the positive line/negative line ratio of the mixture ranged from 0 to 100%. Aliquots were stained using the procedure described above and linear regression between the expected values and the observed values was calculated.

<table>
<thead>
<tr>
<th>Specificity</th>
<th>Linear regression</th>
<th>Linearity (R²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD41</td>
<td>Y = 0.99 X + 1.94</td>
<td>0.9994</td>
</tr>
</tbody>
</table>

EXPECTED VALUES

The CD41 antigen is not expressed on leucocytes taken from normal blood, which does not permit a measurement of the laboratory variability of this parameter to be established from leucocytes taken from peripheral blood.

INTRA-LABORATORY REPRODUCIBILITY

On the same day and using the same cytometer, 12 measurements of the percentage of staining of a positive target (platelets) were carried out. The results obtained are summarized in the following table:

<table>
<thead>
<tr>
<th>Positive Target</th>
<th>Number</th>
<th>Mean (%</th>
<th>SD</th>
<th>CV (%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelets</td>
<td>12</td>
<td>82.91</td>
<td>2.15</td>
<td>2.6</td>
</tr>
<tr>
<td>CD41*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INTER-LABORATORY REPRODUCIBILITY

On the same day and for the same positive target (platelets), 12 measurements of the percentage of stained cells were carried out by two technicians and the preparations analyzed using two different cytometers. The results obtained are summarized in the following tables:

Cytometer n° 1:

<table>
<thead>
<tr>
<th>Positive Target</th>
<th>Number</th>
<th>Mean (%)</th>
<th>SD</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelets CD41*</td>
<td>12</td>
<td>82.91</td>
<td>2.15</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Cytometer n° 2:

<table>
<thead>
<tr>
<th>Positive Target</th>
<th>Number</th>
<th>Mean (%)</th>
<th>SD</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelets CD41*</td>
<td>12</td>
<td>78.42</td>
<td>2.05</td>
<td>2.6</td>
</tr>
</tbody>
</table>

LIMITATIONS OF THE TECHNIQUE

1. Flow cytometry may produce false results if the cytometer has not been aligned perfectly, if fluorescence leaks have not been correctly compensated for and if the regions have not been carefully positioned.

2. It is preferable to use a RBC lysis technique with a washing step as this reagent has not been optimized for "no wash" lysis techniques.

3. Accurate and reproducible results will be obtained as long as the procedures used are in accordance with the technical insert leaflet and compatible with good laboratory practices.

4. The conjugated antibody of this reagent is calibrated so as to offer the best specific signal/non-specific signal ratio. Therefore, it is important to adhere to the reagent volume/sample volume ratio in every test.

5. In certain disease states, such as severe renal failure or haemoglobinopathies, lysis of red cells may be slow, incomplete or even impossible. In this case, as in the case of low platelet counts, it is preferable to carry out the test on platelet-enriched plasma (PEP).

MISCELLANEOUS

See the Appendix for examples and references.

TRADEMARKS

The Beckman Coulter logo, COULTER, EPICS, EXPO, Flow-Set, IOTest, System II, VersaLyse, and XL are registered trademarks of Beckman Coulter Inc.

BD FACScan is a registered trademark of BD Biosciences and Company.

MANUFACTURED BY:

IMMUNOTECH SAS
a Beckman Coulter Company
130 avenue de Lattre de Tassigny
B.P. 177 – 13276 Marseille Cedex 9
France
Customer Services: (33) 4 91 17 27 27
www.beckmancoulter.com
APPENDIX TO REF A07781

EXAMPLES

The graphs below are monoparametric representations (Count vs. Fluorescence of normal platelet-rich plasma PRP). Staining is with IOTest CD41-PE Conjugated Antibody (Ref. A07781). Gate is on platelets. A mouse PE-conjugated IgG1 isotypic control (Ref. A07796) is shown in light.

Acquisition and analysis are performed with a COULTER® EPICS® XL™ flow cytometer equipped with System II™ software.

REFERENCES