USE

This fluorochrome-conjugated antibody permits the identification and quantification of leucocyte populations expressing the CD19 antigen in human biological samples by means of flow cytometry.

PRINCIPLE

This test is based on the ability of specific monoclonal antibodies to bind to the antigen determinants expressed by leucocytes. Specific staining of the leucocytes is performed by incubating the sample with the IOTest® reagent. The red cells are then removed by lysis and the leucocytes, which are unaffected by this process, are analyzed by flow cytometry. The flow cytometer measures light diffusion and the fluorescence of cells. It makes possible the delimitation of the population of interest within the electronic window defined on a histogram, which correlates the orthogonal diffusion of narrow-angle light (Forward Scatter or FS) and the diffusion of wide-angle light (Side Scatter or SS) and the fluorescence of leucocytes. The fluorescence of the delimited cells is analyzed in order to distinguish the positively-stained events from the unstained ones. The results are expressed as a percentage of positive events in relation to all the events acquired by the gating.

EXAMPLES OF CLINICAL APPLICATIONS

Characterization and quantification of B lymphocytic cell populations in immune system disorders: immune deficiencies, auto-immune disorders, hypersensitivity reactions, viral infections, restoration of the immune response after bone marrow and/or organ transplantation and phenotyping of CD19 populations in malignant blood dyscrasias such as leukaemias and lymphomas (1-4).

STORAGE AND STABILITY

The conjugated liquid must be kept at between 2 and 8°C and protected from light, before and after the vial has been opened. Stability of closed vial: see expiry date on vial. Stability of opened vial: the reagent is stable for 90 days.

PRECAUTIONS

1. Do not use the reagent beyond the expiry date.
2. Do not freeze.
3. Let it come to room temperature (18 – 25°C) before use.
5. Avoid microbial contamination of the reagents, or false results may occur.
6. Antibody solutions containing sodium azide (Na₃N₃) should be handled with care. Do not take internally and avoid all contact with the skin, mucosa and eyes. Moreover, in an acid medium, sodium azide can form the potentially dangerous hydrazoic acid. If it needs to be disposed of, it is recommended that the reagent be diluted in a large volume of water before pouring it into the drainage system so as to avoid the accumulation of sodium azide in metal pipes and to prevent the risk of explosion.
7. All blood samples must be considered as potentially infectious and must be handled with care (in particular: the wearing of protective gloves, gowns and goggles).
8. Never pipette by mouth and avoid all contact of the samples with the skin, mucosa and eyes.
9. Blood tubes and disposable material used for handling should be disposed of in ad hoc containers intended for incineration.

SAMPLES

Venous blood or bone marrow samples must be taken using sterile tubes containing an EDTA salt as the anticoagulant. The use of other anticoagulants is not recommended. Samples should be kept at room temperature (18 – 25°C) and not shaken. The samples should be homogenized by gentle agitation prior to taking the test sample. The samples must be analyzed within 24 hours of venipuncture.

METHODOLOGY

NECESSARY MATERIAL NOT SUPPLIED

• Sampling tubes and material necessary for sampling.
• Automatic pipettes with disposable tips for 10, 100 and 500 µL.
• Plastic haemolysis tubes.
• Calibration beads: Flow-Set™ Fluospheres (Ref. 6607007).
• Red cell lysis reagent with washing stage after lysis. For example: VersaLyse™ (Ref. A09777).
• Lymphocyte fixation reagent. For example: IOTest® 3 Fixative Solution (Ref. A07800).
• Isotypic control: IOTest® reagent. IgG1-ECD (Ref. A07797).
• Buffer (PBS: 0.01 M sodium phosphate; 0.145 M sodium chloride; pH 7.2).
• Centrifuge.
• Automatic agitator (Vortex type).
• Flow cytometer.

PROEDURE

NOTE: The procedure below is valid for standard applications. Sample and/or VersaLyse volumes for certain Beckman Coulter applications may be different. If such is the case, follow the instructions on the application’s technical leaflet.

1. Add 10 µL of specific IOTest conjugated antibody to each test tube, and 10 µL of the isotypic control to each control tube.
2. Add 100 µL of the test sample into both tubes.
3. Incubate for 15 to 20 minutes at room temperature (18 – 25°C), protected from light.
4. Then perform lysis of the red cells, if necessary, by following the recommendations of the lysis reagent used. As an example, if you wish to use VersaLyse (Ref. A09777), refer to the leaflet and follow preferably the procedure called "with concomitant fixation", which consists of adding 1 mL of the "Fix-and-Lyse" mixture prepared extemporaneously. Vortex immediately for one second and incubate for 10 minutes at room temperature, protected from light. If the sample does not contain red cells, add 2 mL of PBS.
5. Centrifuge for 5 minutes at 150 x g at room temperature.
6. Remove the supernatant by aspiration.
7. Resuspend the cell pellet using 3 mL of PBS.
8. Repeat step 5.
9. Remove the supernatant by aspiration and resuspend the cell pellet using:
 – 0.5 mL or 1 mL of PBS plus 0.1% of formaldehyde if the preparations are to be kept for more than 2 hours and less than 24 hours. (A 0.1% formaldehyde PBS can be obtained by diluting 12.5 µL of the IOTest® 3 Fixative Solution (Ref. A07800) at its 10X concentration in 1 mL of PBS).
 – 0.5 mL or 1 mL of PBS without formaldehyde, if the preparations are to be analyzed within 2 hours.

NOTE: In all cases, keep the preparations between 2 and 8°C and protected from light.
PERFORMANCE SPECIFICITY
The J3-119 monoclonal antibody was assigned to CD19 during the 4th HLDA Workshop on Human Leucocyte Differentiation Antigens, held in Vienna, Austria 1989 (5-7).

LINEARITY
To test the linearity of staining of this reagent, a positive cell line (RAMOS) and a negative cell line (HPBALL) were mixed in different proportions with a constant final number of cells, so that the positive line/negative line ratio of the mixture ranged from 0 to 100%. Aliquots were stained using the procedure described above and linear regression between the expected values and the observed values was calculated.

<table>
<thead>
<tr>
<th>Specificity</th>
<th>Linear regression</th>
<th>Linearity (R²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD19</td>
<td>Y = 0.98 X + 0.84</td>
<td>0.999</td>
</tr>
</tbody>
</table>

EXPECTED VALUES
Each laboratory must compile a list of reference values based upon a group of healthy donors from the local population. This must be done by taking age, sex and ethnic group into account, as well as any other potential regional differences.

In our laboratories, the whole blood samples of 50 healthy adults were treated using the reagent described above. The results obtained for the counting of the positive events of interest with this reagent are given in the tables below:

<table>
<thead>
<tr>
<th>Lymphocytes</th>
<th>Number</th>
<th>Mean (%)</th>
<th>SD</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD19</td>
<td>50</td>
<td>10.80</td>
<td>5.72</td>
<td>52.98</td>
</tr>
</tbody>
</table>

INTRA-LABORATORY REPRODUCIBILITY
On the same day and using the same cytometer, 12 measurements of the percentage of positive cells were carried out on a target population (lymphocytes). The results obtained are summarized in the following table:

<table>
<thead>
<tr>
<th>Positive Target</th>
<th>Number</th>
<th>Mean (%)</th>
<th>SD</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD19 Lympocytes</td>
<td>12</td>
<td>11.21</td>
<td>0.77</td>
<td>6.9</td>
</tr>
</tbody>
</table>

INTER-LABORATORY REPRODUCIBILITY
On the same day and for the same population (lymphocytes), 12 measurements of the percentage of positive cells were carried out by two technicians and the preparations analyzed using two different cytometers. The results obtained are summarized in the following tables:

Cytometer n° 1:

<table>
<thead>
<tr>
<th>Positive Target</th>
<th>Number</th>
<th>Mean (%)</th>
<th>SD</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD19 Lympocytes</td>
<td>12</td>
<td>11.21</td>
<td>0.77</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Cytometer n° 2:

<table>
<thead>
<tr>
<th>Positive Target</th>
<th>Number</th>
<th>Mean (%)</th>
<th>SD</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD19 Lympocytes</td>
<td>12</td>
<td>12.65</td>
<td>0.37</td>
<td>2.9</td>
</tr>
</tbody>
</table>

LIMITATIONS OF THE TECHNIQUE
1. Flow cytometry may produce false results if the cytometer has not been aligned perfectly, if fluorescence leaks have not been correctly compensated for and if the regions have not been carefully positioned.
2. It is preferable to use a RBC lysis technique with a washing step as this reagent has not been optimized for "no wash" lysis techniques.
3. Accurate and reproducible results will be obtained as long as the procedures used are in accordance with the technical insert leaflet and compatible with good laboratory practices.
4. The conjugated antibody of this reagent is calibrated so as to offer the best specific signal/non-specific signal ratio. Therefore, it is important to adhere to the reagent volume/sample volume ratio in every test.
5. In the case of a hyperleucocytosis, dilute the blood in PBS so as to obtain a value of approximately 5 x 10⁹ leucocytes/L.
6. In certain disease states, such as severe renal failure or haemoglobinopathies, lysis of red cells may be slow, incomplete or even impossible. In this case, it is recommended to isolate mononucleated cells using a density gradient (Ficoll, for example) prior to staining.

MISCELLANEOUS
See the Appendix for examples and references.

TRADEMARKS
The Beckman Coulter logo, COULTER, ECD, EPICS, EXPO, Flow-Set, IOTest, System II, VersaLyse, and XL are registered trademarks of Beckman Coulter Inc. Texas Red is a registered trademark of Molecular Probes Inc.

MANUFACTURED BY:
IMMUNOTECH SAS
a Beckman Coulter Company
130 avenue de Lattre de Tassigny
B.P. 177 – 13276 Marseille Cedex 9
France
Customer Services :(33) 4 91 17 27 27
www.beckmancoulter.com
APPENDIX TO REF A07770

EXAMPLES
The graph below is a monoparametric representation (Count vs. Fluorescence Intensity) of lyzed normal whole blood sample. Staining is with IOTest CD19-ECD Conjugated Antibody (Ref. A07770). Gate is on lymphocytes. A mouse ECD-conjugated IgG1 isotypic control (Ref. A07797) is shown in light.

Acquisition and analysis are performed with a COULTER® EPICS® XL™ flow cytometer equipped with System II™ software.

REFERENCES